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7. THERMAL RADIATION 
 

7.1. Kirchhoff’s Assumption about Thermal Radiation  
 

The electromagnetic radiation of a body in a state of thermodynamic 

equilibrium with the environment is called thermal radiation. The electromagnetic 

radiation of a body in a state of thermodynamic equilibrium with the environment is 

called thermal radiation. What is thermodynamic equilibrium? It looks like a train 

standing at the station: passengers move along the train, but the train does not move 

relative to the station. Thermodynamic equilibrium means that particles inside the 

body can move and exchange energy, but there are no flows. This activity on a 

microscale is averaged over the body, so that the energy and temperature of the body 

do not change. 

Where does the thermal radiation of even a cold body come from? Let’s recall 

that even in a piece of ice the size of a cherry there are billions of free electrons. They 

are accelerated and decelerated inside the substance, and such movement of charged 

particles leads to the generation of electromagnetic waves by them. 

Thermal radiation is equilibrium radiation, because it is emitted by a body in a 

state of thermodynamic equilibrium. Nonequilibrium radiation appears if energy is 

transferred to the body from the outside. An example of nonequilibrium radiation is 

luminescence, when a body glow occurs when photons or electrons or other energy 

carriers act on it. 

In 1859, Gustav Kirchhoff formulated a theorem in which it was stated that the 

thermal radiation of any body is determined 

by some universal function. 

A year later, Kirchhoff introduced the 

concept of a perfect black body (or simply – 

a black body, BB) with an absorption 

coefficient 1bb   for all wavelengths. 

Fig. 7.1 shows the black body models. 

Models are close in properties to the black 

body, but they have 1  .  

Kirchhoff's theorem was later called 

the Kirchhoff radiation law. This law can be 
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Fig.7.1. Models of a black body 
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formulated as follows 
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where ,Tp  is the spectral density of an equilibrium radiation of the body at a 

temperature T and at a wavelength λ, ,T  is the spectral absorption coefficient and 

( , )bbp T  is the unknown universal function. Physicists had been looking for this 

function for 40 years. 

 

7.2. Search for the Kirchhoff’s Universal Function  
 

Studying the properties of the Kirchhoff’s universal function, the Austrian 

physicists Joseph Stefan (Fig. 7.2, a) and Ludwig Boltzmann (Fig. 7.2, b) found in 

1884 the dependence of the total power of thermal radiation from the unit surface 

area of a BB at a temperature T (the Stefan-Boltzmann law): 
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where σ is the Stefan-Boltzmann constant, σ = 5.67·10
–8

 W/m
2
K

4
. This dependence 

was derived by Stefan in 1879 on the basis of experimental data and in 1884 by 

Boltzmann on the basis of thermodynamic concepts of light pressure. 

 In 1893, the German physicist Wilhelm Wien showed that the universal 

function has a spectral maximum, which is determined only by body temperature       

(Wien’s displacement law):  

Fig. 7.2. The Austrian physicists Joseph Stefan (1835–1893, a) 

and Ludwig Boltzmann (1844–1906, b) 
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where b is the Wien constant, b = 2898 μm·K.  

What practical benefits can be derived from 

these two laws? Let's look at two examples. 

Suppose we are interested in how many 

times M the power of thermal radiation of a kettle 

will increase when water is heated from a 

temperature of T1 = 20°C to a boiling point of T2 = 

100°C. To apply the Stefan-Boltzmann formula to 

a real body, pbb(T) must be multiplied by the 

spectral absorption coefficient ,T  of the surface 

of this body and its area A. Answer: 
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As you can see, in this case we are not interested in either the absorption coefficient 

of the kettle’s surface or its area. 

Suppose you are faced with the task of measuring the temperature of molten 

metal, a very important parameter of the metallurgical process. How can you do that? 

This can be done using a pyrometer, infrared thermometer that determines the 

color temperature Tc of a body from its emission spectrum, i.e. according to the 

Wien's formula max .cb T   The closer the properties of the measured body to the 

properties of the black body, the more similar their thermal radiation spectra become 

and the higher the accuracy of the measurement of body temperature.  

The first device to measure temperatures in the range of 1000–3000 K was a 

disappearing-filament pyrometer invented in 1901. The operation of this device is 

based on a comparison of the color of the thermal radiation of the measured body and 

the heated filament, the image of which was observed against the background of the 

image of the body. By changing the current through the filament, achieve the 

disappearance of the filament image against the background of the body image, 

which indicates the equalization of temperature of the filament and the body. 

Calibration of the pyrometer is carried out using radiation from a blackbody model. 

 

Fig. 7.3. The German physicist  

Wilhelm Wien (1864–1928) 
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7.3. The Planck’s Law of Thermal Radiation 
 

In 1900, the German physicist Max Planck (Fig. 7.4) derived a formula for the 

spectral density of radiation from a unit surface area of a black body based on 

classical concepts (Planck’s radiation law): 
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where h is the Planck’s constant, h = 6.63·10
–34

  J·s, ν is the frequency of radiation, 

and k is the Boltzmann’s constant, k = 1.38·10
–23 

J/K. The same formula, expressed in 

terms of wavelength, has the form:  
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This is the universal function that physicists have been looking for so long.     

A strange quantity h appears in the formula, which Planck called the quantum of 

action. This formula means that the thermal radiation of a black body emits in 

portions, quanta of energy. In a more general sense, this means that the exchange of 

energy between bodies occurs in portions that are multiples of the quantum of action 

h. A view of dependence of the relative spectral density of blackbody radiation 

(blackbody irradiance) on wavelengths at different temperatures is shown in Fig. 7.5. 

Although Planck doubted the validity of his formula, experimental studies 

confirmed it. Planck's doubts are caused by the incompatibility of the obtained 

formula with classical electrodynamics (Maxwell 

equations) and, in general, with classical physics, 

in which energy is always a continuous quantity. 

The Stefan-Boltzmann law can be obtained 

by integration, and the Wien’s law by 

differentiation the universal function with respect 

to λ: 
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Fig. 7.4. The German physicist 

Max Planck (1858–1947) 
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Let's see what application the 

Planck’s formula has in practice. 

Suppose we want to determine the 

power of thermal radiation of human 

body at λ = 10 μm within the spectral 

range Δλ = 0.5 μm.  

The lower curve in Fig. 7.5 

corresponds to the spectral 

characteristic of the thermal radiation 

of the human body. Assuming that the 

function pbb(λ) is practically unchanged 

in the spectral range , we can find the 

power of thermal radiation of the 

human body (and any other body) from the formula 

 ,T bbP p A    , 

where ,T  is the spectral coefficient of absorption of the body’s surface (let it be 

0.3), and A is the area of the body (let it be 0.9 m
2
). At a body temperature of            

T = 310 K, the power of thermal radiation in the indicated spectral range is 
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Let us use this result to find how much of the thermal radiation power of the 

human body enters the lens of an infrared camera with a radius r = 2 cm located at a 

distance L = 100 m. From this distance, the human body can be regarded as a point 

source of radiation, uniformly radiating in all directions. Then a part of the total 

thermal radiation flux equal to the ratio of the area of the input aperture of the lens to 

the area of the sphere of radius L will fall on the lens. Therefore, the power of the 

radiation incident on the lens of infrared receiver  
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Fig. 7.5. Dependence of the relative blackbody 

irradiance on wavelengths at different 

temperatures (a.u. – arbitrary units) 
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The spectrum of solar radiation turned out to be very close to the radiation 

spectrum of a black body at a temperature T = 5778 K (Fig. 7.6). Maximum radiation 

is observed at a wavelength of 555 nm (green light). Such a spectrum has solar 

radiation outside the atmosphere, where the radiation flux density is 1365 W/m
2
 (the 

so-called solar constant). Atmospheric absorption creates dips in this spectrum. At 

summer noon, at the latitude of Kyiv, on the Earth’s surface falls the solar radiation 

flux of 760 W/m
2
. 

Thermal radiation becomes visible at a temperature of 800 K (a deep red glow 

of the body appears). As the temperature rises to 1300 K, the radiation turns bright 

red. At a temperature of 1500 K, the radiation becomes yellow, and at 

1800 K changes to dazzling white. 

 

7.4. On the Doorstep of a Quantum Era 
 

The Planck’s formula opened the era of quantum physics, the laws of which are 

very different from the laws of classical physics and often defy logical explanation. 

In 1920, Planck said in his Nobel lecture [7.1]: 
 

«What becomes of the energy of a photon after complete emission? Does it spread out in all 

directions with further propagation in the sense of Huygens’ wave theory, so constantly taking up 

more space, in boundless progressive attenuation? Or does it fly out like a projectile in one direction 

in the sense of Newton’s emanation theory? In the first case, the quantum would no longer be in the 

position to concentrate energy upon a single point in space in such a way as to release an electron 

from its atomic bond, and in the second case, the main triumph of the Maxwell theory – the 

continuity between the static and the dynamic fields and, with it, the complete understanding we 

Fig. 7.6. Dependence of the solar irradiance on the wavelength 

approximated by the blackbody spectrum at T = 5778 K 
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have enjoyed, until now, of the fully investigated interference phenomena – would have to be 

sacrificed, both being very unhappy consequences for today’s theoreticians». 
 

There is no answer to the question asked by Planck 100 years ago. 
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